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Steady state behavior of mechanically perturbed spin glasses and ferromagnets

David S. Dean and Alexandre Lefe`vre
IRSAMC, Laboratoire de Physique Quantique, Universite´ Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, Franc

~Received 12 June 2001; published 20 September 2001!

A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity
is considered. Like granular media, these systems have an extensive entropy of metastable states. We consider
the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable
state. We then introduce a tapping mechanism, analogous to that found in real experiments on granular media.
This tapping, corresponding to flipping each spin with probabilityp simultaneously, leads to a stationary
regime with a steady state energyE(p). We explicitly solve this problem for the one-dimensional ferromagnet
and the6J spin glass, and carry out extensive numerical simulations for spin systems of higher connectivity.
In addition our simulations on the ferromagnetic systems reveal a first order transition, whereas the usual
thermodynamic transition on these graphs is second order.

DOI: 10.1103/PhysRevE.64.046110 PACS number~s!: 05.20.2y, 75.10.Nr, 81.05.Rm
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I. INTRODUCTION

Recently there has been much experimental and theo
cal interest in the properties of granular media. In such s
tems the thermal energy available is not sufficient to all
the rearrangement of a single particle, and hence the sy
is effectively at zero temperature in the thermal sense.
fact that the problem is not trivial lies in the fact that su
systems have an exponentially large number of such m
stable states, which may be also called blocked or jamm
configurations. Edwards associated an entropy with th
configurations,

SEdw5 ln~NMS!, ~1!

where NMS is the total number of metastable states of
system@1#. It is reasonable to assume that in complex s
tems such as granular mediaSEdw is extensive, meaning tha
NMS5exp(Ns) wheres is the entropy per particle which in
the thermodynamics limit becomes independent ofN. Alter-
natively one may work with an entropy per unit of volum
which is clearly a more natural choice in granular med
Because the system has an extensive number of blocked
figurations, if it is prepared from a random initial state it w
lower its energy via only energy lowering rearrangeme
until it becomes stuck in a metastable state. Normally
first encountered blocked state will not be that of low
energy~or most dense packing!. In order to change the stat
of the system an external perturbation such as tapping
shearing is required. In between perturbations the system
laxes into new configurations. A natural and practically ve
important question concerning this sort of dynamics is
following: What are the properties of the steady state reg
obtained via such mechanical perturbation schemes?

Recently it was shown that spin glasses and ferromag
on random graphs have an extensive entropy of metast
states, and the one may calculate this entropy at fixed va
of the energy@2,3#. Therefore, though they are quite differe
physically to granular materials, these systems have an
tensive entropy of metastable states as do granular me
1063-651X/2001/64~4!/046110~10!/$20.00 64 0461
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The possibility of using spin glasses as a paradigm for gra
lar material was first introduced in Ref.@4#.

Let us recall an example of an experiment on a system
hard spheres reported in Ref.@5#. A system of dry hard soda
glass spheres is placed in a glass tube. The system is ta
by using a piston to move the tube vertically through a s
cycle. The tapping parameterG is defined to be the ratio o
the maximal acceleration due to the piston in the cycle tg
the acceleration due to gravity. After an initial irreversib
curve, obtained by increasing the tapping rate slowly,
system arrives at a reversible curve where the density
monotonic function ofG, the highest packing densities bein
obtained at the lowest tapping rate. Numerical simulations
granular media@6# reveal a similar behavior~though the ir-
reversible part of the experimental curve corresponding t
loosely packedfluffy metastable state was not seen!. It was
also observed that at small tapping the relaxation to the fi
density is extremely slow, and is well fitted by an inver
logarithmic decay of the form

r~ t !5r`2
Dr`

11B ln~11t/t!
, ~2!

wherer` ~the final density!, Dr` , t ~the characteristic re-
laxation time!, and B are fitting parameters. However,
should be remarked that the behavior of granular system
strongly dependent on the tapping mechanism, and that h
zontal shearing@7# leads to a behavior qualitatively differen
to vertical tapping.

In this paper we extend and elaborate a preliminary rep
of the results of Ref.@8#. The philosophy of this paper is to
examine spin glasses as paradigms for granular media. H
the quantity corresponding to the density is the energy of
system. We allow the system to evolve under a random
quential zero temperature single spin flip dynamics wh
only moves which reduce the energy are allowed. When
system is blocked we tap it with strengthpP@0,1/2#, that is
to say each spin is flipped with a probabilityp, the updating
at this point being parallel. The system is then evolved by
zero temperature dynamics until it once again becom
stuck; the tapping is then repeated. Physically this co
©2001 The American Physical Society10-1
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DAVID S. DEAN AND ALEXANDRE LEFÈVRE PHYSICAL REVIEW E64 046110
sponds to assuming that, in granular media, the relaxa
time to a new metastable state is much shorter than the
between taps. A similar, though not identical, tapping d
namics has also been introduced independently in the con
of three spin ferromagnetic interactions on thin hypergra
@9#, also with the goal of studying the dynamics of granu
media. We find that a stationary regime is reached afte
sufficiently large number of taps, characterized by a ste
state energyE(p) ~analogous to the stationary density, t
same analogy as used in Ref.@9#!. The initial dynamics from
the random initial configuration into the first metastable st
is examined analytically for the one-dimensional6J spin
glass or ferromagnet~the two are equivalent by a gaug
transformation!. We call this the initial fall, and the averag
energy of the first metastable state visitedEf is computed.
We then develop a mean field theory for the dynamics un
falling, then tapping; interestingly, this theory appears to
exact in the case of a one-dimensional system, and one
calculateE(p) within this scheme, the results being in e
cellent agreement with the numerical simulations.

Numerically we examine the tapping of spin glasses a
ferromagnets of higher connectivity. For the spin glass
find that E(p) is, as in the experiments, a decreasing fu
tion of p. For smallp we define the exponentu by E(p)
;E(01)1Apu, with A a constant. In the one-dimension
case we show analytically thatE(p);211A2p, henceu
51/2, whereas for spin glasses on thin graphs for connec
ity superior to two we find thatu51. However, for p
,0.05 we find that the time to reach the steady state is
tremely long and not accessible numerically. In this sl
dynamical regime we find a slow relaxation of the time d
pendent energy, reminiscent of that observed in experim
on granular media@5#, and hence compatible with Eq.~2!.

In the case of the ferromagnet we find numerically th
there exists a critical valuepc of p such that forp.pc ,
E(p).EGS whereEGS is the energy of the ground state an
the inequality is strict, and that forp,pc E(p)5EGS.
Hence in the ferromagnetic system there is a first order ph
transition under the tapping dynamics~in contrast to the
usual thermodynamic ferromagnetic transition in these s
tems, which is second order@10#!.

There have of course been many models studied to un
stand the compaction process in granular media@11–13#,
which reproduced many of the experimental features. H
the spin glass is clearly far from a realistic realization o
granular media; however, the fact that it has an extens
entropy of blocked states and the obviously natural form
the tapping dynamics implemented makes it a natural tes
ground for ideas about dynamics and the possible thermo
namics of systems such as granular media. Moreover, it
argued in Ref.@11# that the slow compaction regime is we
explained if we assume that particles can rearrange th
selves in such a way as to create a particle size void, wh
is quickly filled by a new grain. This mechanism involves
crossing of energy barriers, and leads to a logarithmic co
paction before the asymptotic steady state regime@12#. We
expect that the local rearrangements which occur during
04611
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tapping dynamics on spin glasses random graphs will lea
a behavior analogous to the slow glassy dynamics of syst
as granular media.

Of course one would ultimately like to obtain a theoretic
understanding of the asymptotic, steady state regime
lightly tapped granular media. Edwards proposed@1# that a
light tapping dynamics on granular type systems leads t
steady state whose properties are determined by a flat m
sure over the blocked or metastable states satisfying the m
roscopic constraints involved e.g., fixed internal energy a
compactivity!. This idea recently attracted much interest, a
was examined in the context of various models@14–17#. In
this paper we shall concentrate simply on the asympt
energy of the final tapped state. A study of the dynam
leading to this final regime is deferred for further investig
tion @18#. We shall see that the calculation of the Edwar
entropy as a function of energy gives us a possible expla
tion of the first order ferromagnetic transition.

II. SPIN SYSTEMS ON THIN GRAPHS

The models we shall consider are spin systems on ran
thin graphs. A random thin graph is a collection ofN points,
each point being linked to exactlyc of its neighbors,c there-
fore being the connectivity of the graph. The distribution
metastable states in these systems was recently consider
Refs. @2,3#. The spin glass and ferromagnet model we sh
consider has the Hamiltonian

H52
1

2 (
j Þ i

Ji j ni j SiSj , ~3!

whereSi are Ising spins;ni j is equal to 1 if the sitesi and j
are connected, and equal to zero otherwise. The fact tha
local connectivity is fixed asc imposes the local constraint
( jni j 5c, for all sitesi. In the spin glass caseJi j are taken
from a binary distribution whereJi j 521 with a probability
1/2, andJi j 51 with a probability 1/2. In the ferromagneti
case,Ji j 51. Here we define a metastable state as a s
configuration where any single spin flip does not increase
energy of the system. Mathematically the total number
these metastable states is expressed as

NMS5Tr )
i 51

N

uS (
j Þ i

Ji j ni j SiSj D , ~4!

whereu is the Heaviside step function. This equation may
understood as follows. The energy changeDEi due to the
spin flip Si→2Si is given byDEi5( j Þ iJi j ni j SiSj . Hence a
configuration is single spin flip stable if allDEi ’s for that
configuration are non-negative.

It should be pointed out here that the definition of me
stable states is of course dependent on the dynamics o
system, in contrast with microstates in classical statist
mechanics. Whether or not, in certain cases, the informa
about the dynamics encoded in the calculation of the entr
of metastable states is enough to allow one to predict
properties of the steady state regime is an open question
0-2
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STEADY STATE BEHAVIOR OF MECHANICALLY . . . PHYSICAL REVIEW E64 046110
The fact that, in our definition of metastable states,
include the marginal case~where the energy change is zer!
implies that hereu(x), the Heaviside step function, is take
such thatu(0)51. In the context of granular media, whe
friction plays an important role, this is a natural choice
one certainly needs a nonzero force in order to make a g
move. With this definition, the total number of metastab
states of internal energyE per spin is formally given by

NMS~E!5Tr )
i 51

N

uS (
j Þ i

Ji j ni j SiSj D d~H2NE!. ~5!

The corresponding Edwards entropy per spin, at a fixed
ergy E per spin, is then given by

sEdw~E!5 ln„NMS~E!…/N. ~6!

III. ONE-DIMENSIONAL FERROMAGNET
AND SPIN GLASS

We remark that by a gauge transformation the o
dimensional ferromagnet and6J spin glass are equivalen
and for transparency place ourselves in the context of
ferromagnet. Let us remark that the zero temperat
Glauber dynamics of the one-dimensional ferromagnet
be explicitly solved@19#; here a diffusion of the domain
walls occurs, and the dynamics is not blocked. In
Glauber case one may close the dynamical equations; h
ever, here such a closure scheme does not seem possible
zero temperature Kawasaki dynamics~conserving the tota
magnetization! of the one-dimensional Ising model, whe
the system can freeze, was solved in Ref.@20#.

To solve the dynamics of the one-dimensional ferrom
net we consider the dynamics from the point of view of t
bonds. We define a fault of lengthn to be a sequence ofn
neighboring adjacent domain walls. The zero tempera
dynamics takes place within these faults via the flipping
one of then21 spins contained between then domain walls.
We defineI i(n) to be the function~taking the value 1 if its
argument is true, and 0 otherwise! indicating that, starting
from bond i, there are exactlyn consecutive domain walls
~there being no domain wall on bondi 21 and no domain
wall on bondn1 i but all the intervening bonds have a d
main wall!. In the initial configuration we take the probabi
ity that a given spin is different from its left neighbor~that is
to say the probability of a domain being between two spi!
to be a. Hence ifa50, we have an initially ferromagneti
configuration. Ifa51, it we have an antiferromagnetic con
figuration. The casea51/2 corresponds to a completely ra
dom configuration of maximal entropy. The total energy
the initial configuration is then given by

E052N12(
i

(
n

I i~n!, ~7!

as the energy is given by the ground state energy2N plus
two times the number of domain walls~excitations!. Defin-
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ing K0(n) to be the probability that one hasn consecutive
domain walls starting from a given site@hence K0(n)
5^I (n)& where^•& indicates the average over the initial co
ditions#, with the initial conditions introduced above on
finds

K0~n,N!5~12a!2an. ~8!

~The length of the defaults has a geometric distribution.! The
initial energy per site of a configuration generated in t
manner is therefore~using the translational invariance of th
system whenN→`) given by

E05211 2 (
n51

N

K0~n,N!n. ~9!

For the distribution of initial configurations considere
here, we therefore find that

E052112a. ~10!

We define byx(n) the average number of isolated d
main walls left by a fault ofn consecutive domain walls afte
the zero temperature dynamics described above has finis
The final energy of the system per siteEf is therefore

Ef5211 2 (
n51

N

K0~n,N!x~n!. ~11!

By the definition of the spin dynamics, domain walls di
appear by pairs of two neighboring domain walls. It is cle
that x(1)51 and x(2)50, and we setx(0)50. Within
such a fault the dynamics proceeds by flipping one of thn
21 spins between the domain walls. This leads to the eli
nation of the two domain walls on either side of the sp
being flipped. An example of this dynamics for a fault
length 4 is shown in Fig. 1. By recurrence, after a rand
flip we obtain

x~n!5
1

n21 (
k51

n21

x~k21!1x~n2k21!. ~12!

We solve Eq.~12! by introducing the generating functiona

FIG. 1. An example of the falling dynamics for a fault of leng
4. The symbolsO indicate the presence of a domain wall. Th
broken arrowed lines start at a spin that is flipped, and lead to
following configuration.
0-3
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DAVID S. DEAN AND ALEXANDRE LEFÈVRE PHYSICAL REVIEW E64 046110
g~z!5 (
n51

`

x~n!zn. ~13!

The resulting equation forg(z) is

z
dg

dz
5S 2z2

~12z!
11Dg~z!. ~14!

Solving this with the appropriate boundary conditions, o
obtains

g~z!5
z exp~22z!

~12z!2 , ~15!

and substituting this into Eq.~11! yields

Ef52112~12a!2(
n51

`

x~n!an52112~12a!2g~a!,

~16!

thus giving the result

Ef52112a exp~22a!. ~17!

This yields a value ofEf for the completely random initia
configuration, wherea51/2, of20.632121. In fact the value
of Ef is maximal for the casea51/2. For the totally antifer-
romagnetic initial condition, wherea51, here we findEf
520.72933. Clearly whena50 the system is already in it
ground state, and we findEf521 as we should. We note
that these values~and those for alla) have been checke
with and are in perfect agreement with our numerical sim
lations. This calculation with the one dimensional ferroma
net demonstrates two important points.

~i! The final value of the energyEf depends strongly on
the initial configuration.

~ii ! The system does not fall into a state of energy cor
sponding to the maximum ofNMS(E). In Refs.@2,3# it was
shown thatNMS(E);exp„Ns(E)… wheres(E) is a concave
function peaked atE* 521/A5'0.44721. Hence, even i
the total number of metastable states is dominated~in the
statistical sense! by those of energyE* , generic initial con-
ditions always seem to lead to an energy lower than
@9,14#. In Ref. @21# the value ofEf for a variety of zero
temperature dynamics~sequential, greedy and reluctant! in
04611
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the fully connected Sherrington Kirkpatrick~SK! spin glass
model @22# was studied, similar behavior was found.

When the one-dimensional system is tapped we find
sults in line with those described later for the spin glasse
higher connectivity. The curve ofE(p), the asymptotic sta-
tionary value of the energy at a givenp, is shown in Fig. 3
from 100 systems of size 10 000 spins.

The time taken to reach a stationary value forE(p) was
rapid for largerp, but for smallp there is a very slow relax-
ation to the final asymptotic state which is of the form 1/At,
wheret is the number of taps. This is easily understood as
a very slight tapping order,p effects dominate at early times
this shows the following:~i! Isolated pairs of domain walls
within large domains are immediately destroyed once t
ping is stopped.~ii ! Flipping a spin on either side of a do
main wall creates domain, wall diffusion and with this ann
hilation by coalescence of domain walls. Hence t
dynamics at smallp and early times is qualitatively the sam
as that for low temperature Ising model coarsening@23#.

In order to go beyond our first calculation ofEf and solve
the tapping dynamics, we consider a mean field theory
the dynamics of a system of connectivityc. We shall see that
at c52 this theory gives the analytical result@Eq. ~17!#, and
reproduces the numerical tapping results to within numer
errors. Once again we concentrate on the dynamics on
bonds. We say that the bond between two connected s
( i , j ) is satisfied if it gives a negative contribution to th
energy, i.e.,2Ji j SiSj,0 ~here by definitionni j 51 as the
sites are connected!. In the case of the ferromagnet and6J
spin glass this contribution to the energy is clearly either 1
21. Hence here a bond is satisfied or unsatisfied if its c
tribution to the energy is21 or 1. For a given site we defin
x to be the difference between the number of unsatisfied
satisfied bonds. Hencex is the local field on the spin at thi
site andxP2c,2c12, . . . ,c22,c. If x.0 then the spin
can flip bringing about the changex→2x. In addition, by
P(x,k) we denote the probability that the site of interest h
a local fieldx after a total ofk attempted random sequenti
spin flips under the zero temperature falling dynamics~that is
to say the dynamics in between taps!. We definef 1 and f 2

as the probabilities that a given spin can flip conditional
the fact that the bond with a given neighboring site is n
satisfied or satisfied, respectively. Formally we have

f 65Prob~x.0ugiven bond is not satisfied or satisfied!
~18!

We may turn around this conditional probability usin
Bayes’ theorem to obtain
f 65
Prob~x.0 and given bond is not satisfied or satisfied!

Prob~given bond is not satisfied or satisfied!
. ~19!
0-4
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Given that a site has local fieldx, it must have (c1x)/2
unsatisfied bonds and (c2x)/2 satisfied bonds. Therefore
we find that

Prob~x.0 and given bond is not satisfied or satisfied!

5 (
x.0

P~x!~c6x!/2c

and

Prob~given bond is not satisfied or satisfied!

5(
x

P~x!~c6x!/2c.

Putting these results into Eq.~18! then gives

f 65

(
x.0

P~x!~c6x!

(
x

P~x!~c6x!

. ~20!

If we are interested in the spin at sitei the possibilities be-
tween timek andk11 are as follows:

~i! The spin at sitei is chosen andx.0; then the spin at
site i will flip and x goes to2x.

~ii ! The spin at sitei is chosen andx<0; then the spin at
site i cannot flip andx does not change.

~iii ! A neighbor of sitei with positive local field is chosen
and so flips. In this case,x goes tox12 or to x22 depend-
ing on whether or not the bond with sitei was satisfied or no
satisfied.

~iv! A neighbor of sitei with negative or zero local field is
chosen and so does not flip. In this case,x does not change

~v! One chooses neither the spin at sitei nor any of its
neighbors, and sox staysx.

A schematic example of the falling dynamics for a syst
of connectivityc53 is shown in Fig. 2. Assuming that th
distribution at every site is given byP(x,k) and assuming
independence between the values ofx from site to site~the
mean field approximation! we obtain

P~x,k11!5
u~2x!

N
P~2x,k!1

u~2x!

N
P~x,k!

1
N2c21

N
P~x,k!1P~x,k!S c1x

2N
~12 f 1!

1
c2x

2N
~12 f 2! D1P~x12,k!

c1x12

2N
f 1

1P~x22,k!
c2x12

2N
f 2 . ~21!
04611
In this equation we have to defineu(0), thechoice compat-
ible with the conservation of probability isu(0)51/2. Tak-
ing the limit N→` we may introduce the continuous tim
t5k/N, and obtain

dP~x!

dt
5u~2x!P~2x!1u~2x!P~x!2~c11!P~x!1P~x!

3S c1x

2
~12 f 1!1

c2x

2
~12 f 2! D

1P~x12!
c1x12

2
f 11P~x22!

c2x12

2
f 2 .

~22!

The average energy per site at timet is then given by
E(t)5 1

2 (xxP(x,t), and one can show that the above me
field equation~22! respects the exact identity for the evol
tion of the average energy per spin:

dE

dt
522(

x.0
xP~x,t!. ~23!

The case wherec52 ~the one dimensional case! is acces-
sible to an analytical solution, and we proceed by definin

u~t![P~22,t!,

v~t![P~0,t!,

w~t![P~2,t!.

One finds that

f 250,
~24!

f 15
2w

v12w
,

and the full mean field evolution equations become

FIG. 2. An example of the falling dynamics for a spin syste
with c53. The symbols1/2 indicate unsatisfied and satisfie
bonds. The broken arrowed lines start at a spin that is flipped,
lead to the following configuration.
0-5
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du

dt
5 f 1v1w,

dv
dt

52 f 1v12 f 1w, ~25!

dw

dt
52~2 f 111!w.

If we look for a stationary solution of Eqs.~24! and~25!,
we find w50, which expresses the fact that whent is infi-
nite, the system is in a metastable state. To solve Eqs.~24!
and ~25!, we introducel so thatv5lw. Thenl obeys the
equation

dl

dt
5l12, ~26!

with the initial conditionl(0)5v(0)/w(0). Then Eq.~25!
becomes

du

dt
5

2lw

l12
1w,

~27!
dw

dt
52

l16

l12
w,

l125~l~0!12!et, ~28!

andw(t) andv(t) are given by

w~t!5w~0!expS 2t1
4

l~0!12
~e2t21! D , ~29!

v~t!522w~t!1w~0!~l~0!12!expS 4

l~0!12
~e2t21! D .

~30!

The probability to have a positive value for the local fiel
then goes to zero at infinitet, as expected, and the limit ofv
is v(`)5„v(0)12w(0)…e24/[l(0)12]. If we consider the
geometric initial conditions used in the previous exact cal
lation of Ef , the induced initial conditions areu(0)5(1
2a)2, v(0)52a(12a), andw(0)5a2. In this case we ob-
tain Ef5211v(`)52112ae22a reproducing the exac
result @Eq. ~17!#. Tapping the system with a tapping pro
ability p, starting from the values$u(`),v(`),w(`)%, we
obtain the newtappedvalues$u8(0),v8(0),w8(0)%. Defin-
ing q[(12p), the relations between the old andtapped
probabilities are

u8~0!5~123pq!u~`!1pq v~`!,

v8~0!52pq u~`!1~122pq!v~`!, ~31!

w8~0!5pq.
04611
-

Then, after another zero temperature evolution of the syst
it reaches a new local energy probability distribution w
w8(`)50 and

v8~`!5„4pq1v~`!~124pq!…

3expS 2
4pq

4pq1v~`!~124pq! D . ~32!

At this stage of computation one should remark that t
recursive equation contains one of the main features of
numerical simulations, that is,reversibility. Indeed, the pro-
cess involved in Eq.~32! will reach an asymptotic value
which is independent of the initial conditions and depends
p. Hence in the steady state regime under tapping, the p
ability vs(p) ~the subscripts indicating steady state! for sites
to have zero local field is solution of the fixed-point equati

vs~p!5„4pq1vs~p!~124pq!…

3expS 2
4pq

4pq1vs~p!~124pq! D . ~33!

This equation can be solved numerically and the resul
shown in Fig. 3 in comparison with the numerical simul
tions, which we see is excellent. The smallp behavior of
E(p) from Eq. ~33! is E(p)5211A2p1O(p), indicating
that in this caseu51/2.

Given the mean field nature of the above calculation
have used, we do not expect this approximation to corre
describe the approach towards the steady state. By d
comparison with the numerical simulations we have verifi
that this is indeed the case. Let us remark here that a de
of the mean field approximation scheme is that it can
distinguish between a spin glass and a ferromagnet; th
clearly not a problem for the one dimensional situati
where the two are identical.

FIG. 3. Comparison between numerical simulations of tapp
experiments~b! and the analytical result~a! obtained with Eq.~33!.
0-6
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IV. HIGHER CONNECTIVITIES

The systems which we study are6J spin glasses or uni
form ferromagnets on random graphs with a fixed connec
ity c. Let us first recall some analytical results of Refs.@2,3#.
It was found that the mean number of metastable states
creases exponentially with the number of sites in both ca
In addition, in Ref.@3# an annealed approximation to th
Edwards entropy per spin of metastable states at fixed en
E was carried out,

sEdw~E!5 ln„^NMS~E!&…/N, ~34!

which may be exact for the ferromagnet as the calcula
entropy is always positive. Moreover, there is an ene
thresholdE* above which the results are the same for
6J spin glass and the ferromagnet; below, the ferromag
has more metastable states and a nonzero magnetiza
Hence, as far as the energy density of metastable stat
concerned, both the ferromagnet and spin glass are the s
aboveE* —that is, the effect of loop frustration is negligible
In this regime, one also suspects that the zero tempera
dynamics is the same. In particular, numerical simulatio
with 100 samples ofN510 000 sites for connectivities of 3
4, and 5 have found the sameEf for the spin glass and
ferromagnet with very good accuracy~the relative error is
about 1026). The results are show in Table I.

The result of tapping experiments on the systems witc
53 is displayed in Fig. 4. There is some critical tapping r
pc above which the curves ofE(p) versusp are the same for
the spin glass and the ferromagnet. Moreover, the ferrom
net is subject to a phase transition under tapping dynamic
pc such that forp,pc , the steady state reached is t
ground state. Finite size effects have been studied, and
vealed that the transition is first order@in as far that
EFM(pc

1)ÞEFM(pc
2)#, in contrast to the usual thermody

namic ferromagnetic transition in these systems which is s
ond order@10#. For the ferromagnet in the region close topc
one finds an excellent scaling of the energy as a function
N, EFM(N,p)5 f „N(p2pc)…, as shown in the inset of Fig. 4
This scaling may be used to optimize the determination
pc . The first order nature of the transition may be seen
plicitly by looking at the histogram over time~in the steady
state regime! of the average energy per spin atp5pc ; in Fig.
5 one sees two separated peaks in the distribution, and n
single peak which splits into two as one would expect fo
second order transition. Nearpc , for systems of finite size
there is therefore a coexistence of the two phases. The
dependence of the average energy per spin in the simula

TABLE I. Comparison of the numerical values ofE* and
E(pc

1) for different values of the local connectivityc. The result for
E* whenc53 is a truncation of the analytical value215/14.

c pc E(pc
1) E* Ef Ef

MF

3 0.2560.005 21.07660.005 21.0714 21.045 21.023
4 0.25560.005 21.0760.005 21.0760.01 21.01 21.005
5 0.4560.01 21.460.005 21.460.01 21.396 21.368
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leading to the histogram Fig. 5 is shown in Fig. 6. One s
that the system tunnels between the two coexisting sta
The typical time for this tunneling increases as the syst
size increases, indicating, in thermodynamic language, afree
energybarrier between the two phases. As the system siz
increased, the occupation of the intermediate states of en
between the two phase of energyEGS andE(pc

1) ~between
the two peaks in Fig. 5! is suppressed.

We have also measuredE(p) by studying single system
of very large size (N5106); the results are shown in Fig. 7
Here again abovepc the curve for the spin glass and th
ferromagnet are completely indistinguishable, and the fe
magnet reaches the ground state belowpc . For such large
sizes, one no longer sees a coexistence of two phases ar
pc as presumably the tunneling time has become much la
than the simulation time.

Moreover, forN5106, for p.pc the full temporal plots
~and not just the steady state values! of ESG(p,t) and

FIG. 4. Numerical simulations of tapping experiments for t
spin glass~c! and the ferromagnet@~a!, ~b!, and ~d!# for c53 for
N51000 @~c! and ~d!#, N52000 ~b!, andN510 000~a!. The inset
shows the scalingEFM(N,p)5 f @N(p2pc)# for p.pc for N
5400, 1000, and 2000.

FIG. 5. Histogram of the energy per spin obtained from Fig.
0-7
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DAVID S. DEAN AND ALEXANDRE LEFÈVRE PHYSICAL REVIEW E64 046110
EFM(p,t) ~wheret is the number of taps! are indistinguish-
able. Forp,pc the two curves are identical up to a tim
tdi f , which depends on the initial configuration and the
quence of spins flipped during the tapping process; thay
verge after tdi f , when the ferromagnetic system reach
quickly the ground state~see Fig. 8!. Once the ferromagnetic
system has broken theZ2 symmetry, the easiest way to lowe
the energy is to flip the spins which are opposed to the glo
magnetization~because they are more probable not to be
the direction of their local field!, until all the spins are21 or
11.

An identical behavior was found in systems withc54
and 5. The comparison ofESG(p) and EFM(p) for c54 is

FIG. 6. Single run for a ferromagnet of local connectivityc
53, for N510 000 atp50.249'pc . One sees that because th
size is not too large, the energy switches between two values,
not far from that of the ground stateEGS and the other not far
from E* .

FIG. 7. Numerical simulations of tapping experiments forc
53 @~c! spin glass,~d! ferromagnet# and c54 @~a! spin glass,~b!
ferromagnet#. Here we compute the asymptotic energy for only o
sample of very large sizeN5106. The results are quite similar to
those forN5105, and do not change if we average over seve
samples; this indicates that, at these sizes, we are very nea
thermodynamic limit, and we can study only single runs to comp
the energy.
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shown in Fig. 7. We remark that if we compare the differe
values ofpc when increasingc, and considering only odd~or
even! connectivities, we find thatpc grows; we expect that it
goes to 1/2 whenc is very large, as the metastable states
more and more magnetized whenc grows~in the case of the
fully connected ferromagnetic Ising model, only the tw
ground states are metastable, sopc51/2).

The behavior of the spin glass systems is similar to t
for the system withc52. The steady state energyESG(p) is
a monotonically decreasing and continuous function ofp.
For smallp one finds that hereESG(p);ESG(0)1Ap, giv-
ing u51, in contrast tou51/2 in the one dimensional case

A tentative explanation for the ferromagnetic transition
as follows. In Ref.@3# it was also shown that for a ferromag
net the Edwards entropy as a function ofE is concave for
E.E* and convex forE,E* . The value ofE(pc

1) obtained
from the tapping experiments are very close to those
tained forE* in Ref. @3#, the energy at whichsEdw becomes
convex. The results are shown in Table I. Encouraged by
striking observation, we will try to make a tentative link wit
a possible thermodynamics for such systems. If we imag
that the energy of the system is governed by a partition fu
tion inspired by the flat Edwards measure over metasta
states@1,15#,

Z5E dENMS~E!exp~2NbE!, ~35!

where b is a Lagrange multiplier corresponding to the i
verse Edwards temperature which depends solely onp and
not onE, and is a monotonically decreasing function ofp for
pP@01,1/2#. The monotonicity hypothesis is supported b
the simulation results thatE(p) decreases with decreasingp.
Clearly, the energy which dominates in the sum is that ob
ing

ne

l
the
e

FIG. 8. Comparison of energy vs time~number of taps! for the
6J spin glass~a! and the ferromagnet~b! for N5106 spins atp
50.05. We display the magnetization for a ferromagnet~c! whose
absolute value increases with time, whereas the magnetizatio
the spin glass remains zero.
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STEADY STATE BEHAVIOR OF MECHANICALLY . . . PHYSICAL REVIEW E64 046110
]sEdw~E!

]E
2b50. ~36!

However, if this saddle gives a true maximum of the act
one must have also that

]2sEdw~E!

]E2
,0, ~37!

and hence the Edwards entropy must be concave for the
ergy considered to be thermodynamically stable. Hence,
E,E* , this suggests that the only stable energy is
ground state, and that the intermediate energies betweemE*
andEGS are not realizable as steady state energies.

Let us mention here that we measured the energy in
simulations over a few hundred time steps after the ene
appeared to stop to decay. To be sure that the systems
sidered here were in a stationary regime~and that the energy
was not decaying extremely slowly as a function of time! we
measured the correlation function at different waiting tim
tw ~the number of taps after the initial preparation of t
system!; that is to say,

C~ t1tw ,tw!5
1

N (
i 51

N

Si~ tw!Si~ tw1t !. ~38!

In the stationary regime this should be a function only oft. In
out-of-equilibrium systems the fact that the system is no
equilibrium shows up strongly as aging in the correlati
function, i.e.,C(t1tw ,tw)ÞC(t) ~see, Ref.@24#, and refer-
ences within!, even though the energy may be decaying
slowly that it appears to have reached its asymptotic equ
rium value. The time translational invariance ofC(t
1tw ,tw) is thus quite a rigorous test of whether the stea
state regime has been attained. For example for the cap
50.02, with the waiting timestw530 000 and 60 000 show
in Fig. 9, one sees clearly that after the appropriate tran
tion of the t axis, the two functions collapse perfectly on
one another. One also sees that the decay ofC(t) ~in the
longtime regime we can now eliminate thetw dependence! is
exponential at larget and also thatC(t) decays to zero,
indicating a form of ergodicity in the system. As pointed o
in Ref. @14#, this behavior of the correlation function seems
necessary condition for the validity of the scenario of E
wards, that under tapping all metastable states satisfying
relevant macroscopic constraints~fixed energy and compac
tivity ! are equiprobable in the stationary regime of gen
tapped or perturbed system.

In order to test the accuracy of the mean field approxim
tion at high energies~where the system does not distingui
between the ferromagnet and the spin glass!, we have com-
pared the value ofEf obtained in the numerical simulation
with the resultEf

MF obtained by numerical integration of Eq
~22!. The comparison is shown in Table I, and we see t
the agreement is quite good.

Finally we mention that we have also examined the
versibility of the tapping mechanism. If the system is tapp
for a sufficiently long time, compatible with the relaxatio
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times discussed above, the system is completely revers
This reversibility was found in the experiments in Ref.@5#
once the system had left the initial fluffy state.

V. CONCLUSION

Granular media are a natural example of systems hav
an extensive entropy of metastable states. In such sys
the role of thermal fluctuations are negligible, and in order
evolve one must apply some external tapping mechani
One would ultimately like to be able to formulate some s
of thermodynamics for such systems. The proposition of E
wards @1# for a thermodynamics of such systems is an i
portant step in this direction, and has had some succ
@14,17#, but it has been shown not to be generically true@14#.
A more general understanding of the asymptotic states
tapped systems has far reaching implications for comp
science, as the tapping mechanism studied here is simila
certain algorithms used in optimization problems.

We have presented what appears to be an exact calc
tion of the steady state energy of a tapped one-dimensi
spin glass or ferromagnet. For this problem we have obtai
fixed point equations for the distribution of local fields und
tapping. These equations also explain the reversibility
served in the numerical simulations. In a wide context
models we confirm the observations of Refs.@5,6,9#, that, if
one reduces thestrength of tapping, then the compactio
process, corresponding here to the reduction of the energ
the system, becomes more efficient. The existence of a
order type phase transition for tapped ferromagnets on
dom thin graphs is of great interest; a possible explana
using the calculations of Ref.@3# on the Edwards entropy fo
this system indicates the possibility that one may eventu
construct a more general theory for the thermodynamics
even phase transitions in tapped systems. One is tempte

FIG. 9. Correlation function for the6J spin glass with local
connectivityc53, vs the number of tapst for two values of the
waiting time tw : tw530 000 andtw560 000. The tapping value is
p50.02. The system containsN51000 spins, and we have ave
aged over 1000 samples. Triangles show the right part of the cu
which corresponds totw560 000; shifted to the left by 30 000, i
superimposes perfectly over the curve fortw530 000, demonstrat-
ing the time translation invariance of the correlation function.
0-9
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DAVID S. DEAN AND ALEXANDRE LEFÈVRE PHYSICAL REVIEW E64 046110
speculate that generically the convexity of the Edwards
tropy below a certain energy threshold~denoted here byE* )
leads to acollapseto the ground state energyEGS, the meta-
stable states in the intervening energy values being unab
support a stable thermodynamics. In terms of granular me
this sort of transition would correspond to a transition b
tween a random close packed state to a crystalline c
packed state. It would be interesting to find other syste
~both theoretical and experimental! showing the same col
lapse phenomena in order to test this idea.

Finally let us mention some open questions, posed by
study, that we believe to be of interest for future investig
tion. Clearly a general goal would be, in the spirit of E
wards, to develop a thermodynamics to describe the stat
ary regime of tapped systems such as those studied here
exact results presented here for one-dimensional sys
provide a completely analytical understanding of the tapp
dynamics which one may be able to rederive from sta
considerations. Indeed it was shown@17# in this simple con-
.R

.R
.

i,
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text that several steady state observables may be pred
using the Edwards’ measure. The phase transition foun
the case of the ferromagnetic systems studied here is
tremely interesting. An analytical understanding of this ph
nomena would be desirable; perhaps there exists a perc
tion type argument which would allow one to evaluatepc .
Also of interest is the decay of a system toward its fin
steady state energy. The slow logarithmic decay describe
Eq. ~2! has been used successfully to fit the experimen
data of Ref.@5# and the simulation data of Refs.@9,12#. Our
preliminary study of finite connectivity spin glasses and t
SK model @18# indicates the presence of a slow dynamic
regime for small values of the tapping parameterp, which is
also compatible with a slow logarithmic decay, but t
curves can also be well fitted by power law decays~with the
same number of fitting parameters!. However, there exist
phenomenological arguments@11# and exact calculations an
simulations on toy models@11–13# which support logarith-
mic decay.
ev.
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