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Steady state behavior of mechanically perturbed spin glasses and ferromagnets
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A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity
is considered. Like granular media, these systems have an extensive entropy of metastable states. We consider
the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable
state. We then introduce a tapping mechanism, analogous to that found in real experiments on granular media.
This tapping, corresponding to flipping each spin with probabititgimultaneously, leads to a stationary
regime with a steady state energyp). We explicitly solve this problem for the one-dimensional ferromagnet
and the=xJ spin glass, and carry out extensive humerical simulations for spin systems of higher connectivity.

In addition our simulations on the ferromagnetic systems reveal a first order transition, whereas the usual
thermodynamic transition on these graphs is second order.

DOI: 10.1103/PhysRevE.64.046110 PACS nun®er05.20-y, 75.10.Nr, 81.05.Rm

[. INTRODUCTION The possibility of using spin glasses as a paradigm for granu-
lar material was first introduced in Rg#].

Recently there has been much experimental and theoreti- Let us recall an example of an experiment on a system of
cal interest in the properties of granular media. In such syshard spheres reported in R€5]. A system of dry hard soda
tems the thermal energy available is not sufficient to allowglass spheres is placed in a glass tube. The system is tapped
the rearrangement of a single particle, and hence the systeby using a piston to move the tube vertically through a sine
is effectively at zero temperature in the thermal sense. Theycle. The tapping parametéris defined to be the ratio of
fact that the problem is not trivial lies in the fact that suchthe maximal acceleration due to the piston in the cyclg to
systems have an exponentially large number of such metdhe acceleration due to gravity. After an initial irreversible
stable states, which may be also called blocked or jammedurve, obtained by increasing the tapping rate slowly, the
configurations. Edwards associated an entropy with thesgystem arrives at a reversible curve where the density is a
configurations, monotonic function of”, the highest packing densities being
obtained at the lowest tapping rate. Numerical simulations on
granular medid6] reveal a similar behavioithough the ir-
reversible part of the experimental curve corresponding to a
loosely packedluffy metastable state was not sgelh was
where Ny, is the total number of metastable states of thealso observed that at small tapping the relaxation to the final
system[1]. It is reasonable to assume that in complex sysdensity is extremely slow, and is well fitted by an inverse
tems such as granular meda,,, is extensive, meaning that logarithmic decay of the form
Nus=expNs) wheres is the entropy per particle which in
the thermodynamics limit becomes independentioflter- )= po— Ap.. @)
natively one may work with an entropy per unit of volume PO=pe 1+BIn(1+t/7)’
which is clearly a more natural choice in granular media.

Because the system has an extensive number of blocked cowherep.. (the final density, Ap.., 7 (the characteristic re-
figurations, if it is prepared from a random initial state it will laxation timg, and B are fitting parameters. However, it
lower its energy via only energy lowering rearrangementsshould be remarked that the behavior of granular systems is
until it becomes stuck in a metastable state. Normally thestrongly dependent on the tapping mechanism, and that hori-
first encountered blocked state will not be that of lowestzontal shearingj7] leads to a behavior qualitatively different
energy(or most dense packingln order to change the state to vertical tapping.

of the system an external perturbation such as tapping or In this paper we extend and elaborate a preliminary report
shearing is required. In between perturbations the system ref the results of Ref{8]. The philosophy of this paper is to
laxes into new configurations. A natural and practically veryexamine spin glasses as paradigms for granular media. Here
important question concerning this sort of dynamics is thehe quantity corresponding to the density is the energy of the
following: What are the properties of the steady state regimaystem. We allow the system to evolve under a random se-
obtained via such mechanical perturbation schemes? guential zero temperature single spin flip dynamics where

Recently it was shown that spin glasses and ferromagnetsly moves which reduce the energy are allowed. When the
on random graphs have an extensive entropy of metastabsystem is blocked we tap it with strengphe[0,1/2], that is
states, and the one may calculate this entropy at fixed valugs say each spin is flipped with a probabiljty the updating
of the energy 2,3]. Therefore, though they are quite different at this point being parallel. The system is then evolved by the
physically to granular materials, these systems have an exero temperature dynamics until it once again becomes
tensive entropy of metastable states as do granular medistuck; the tapping is then repeated. Physically this corre-

Sedqw=IN(Nys), (1)

1063-651X/2001/641)/04611Q@10)/$20.00 64 046110-1 ©2001 The American Physical Society



DAVID S. DEAN AND ALEXANDRE LEFEVRE PHYSICAL REVIEW E64 046110

sponds to assuming that, in granular media, the relaxatiotapping dynamics on spin glasses random graphs will lead to
time to a new metastable state is much shorter than the time behavior analogous to the slow glassy dynamics of systems
between taps. A similar, though not identical, tapping dy-as granular media.

namics has also been introduced independently in the context Of course one would ultimately like to obtain a theoretical
of three spin ferromagnetic interactions on thin hypergraphsinderstanding of the asymptotic, steady state regime of
[9], also with the goal of studying the dynamics of granularlightly tapped granular media. Edwards propo$gtithat a
media. We find that a stationary regime is reached after §9ht tapping dynamics on granular type systems leads to a
sufficiently large number of taps, characterized by a stead§t®@dy state whose properties are determined by a flat mea-
state energyE(p) (analogous to the stationary density, the SUre over the blocked or metastable states satisfying the mac-

same analogy as used in REG]). The initial dynamics from roscopic constraints involved e.g., fixed internal energy and

the random initial configuration into the first metastable Statecompactlwty. This idea recently attracted much interest, and

. ) . . . : was examined in the context of various moddd—17. In

is examined analytically for the one-dimensionall spin . . .

glass or ferromagnetthe two are equivalent by a gauge this paper we shall concentrate simply on the asymptotic
. . - energy of the final tapped state. A study of the dynamics

transformation We call this the initial fall, and the average 9y bp y y

, N leading to this final regime is deferred for further investiga-
energy of the first metastable state visitegis computed. , 11g]. We shall see that the calculation of the Edwards
We then develop a mean field theory for the dynamics undegniropy as a function of energy gives us a possible explana-

exact in the case of a one-dimensional system, and one may

calculateE(p) within this scheme, the results being in ex-
cellent agreement with the numerical simulations.

Numerically we examine the tapping of spin glasses and The models we shall consider are spin systems on random
ferromagnets of higher connectivity. For the spin glass wehin graphs. A random thin graph is a collectionMpoints,
find thatE(p) is, as in the experiments, a decreasing func-each point being linked to exactyof its neighborsg there-
tion of p. For smallp we define the exponerd by E(p) fore being the connectivity of the graph. The distribution of
~E(0")+Ap?, with A a constant. In the one-dimensional Metastable states in these systems was recently considered in
case we show analytically th&(p)~ — 1+ \2p, henced Refs._[2,3]. The spin glass and ferromagnet model we shall
=1/2, whereas for spin glasses on thin graphs for connectivéonsider has the Hamiltonian
ity superior to two we find thaty=1. However, forp
<0.05 we find that the time to reach the steady state is ex- - _ 1 n.QQ

: _ _ H > Jjn;Ss;, (3)

tremely long and not accessible numerically. In this slow 2 i
dynamical regime we find a slow relaxation of the time de-
pendent energy, reminiscent of that observed in experimentghereS; are Ising spinsp;; is equal to 1 if the sites andj
on granular medif5], and hence compatible with E(R). are connected, and equal to zero otherwise. The fact that the

In the case of the ferromagnet we find numerically thatocal connectivity is fixed as imposes the local constraints
there exists a critical valug, of p such that forp>p.,  2jni;j=¢, for all sitesi. In the spin glass casg; are taken
E(p)>Egs WhereEgs is the energy of the ground state and from a binary dis'tribution wh(—?(éij =—1 witha probability.
the inequality is strict, and that fop<p, E(p)=Egs. 1/2, andJ;j=1 with a prob-ab|I|ty 1/2. In the ferromagnetic .
Hence in the ferromagnetic system there is a first order phase@Se.Jij=1. Here we define a metastable state as a spin
transition under the tapping dynami¢® contrast to the configuration where any single spin flip does not increase the

usual thermodynamic ferromagnetic transition in these syst_anergy of the system. I\/_Iathemahcally the total number of
tems, which is second ordgt0)). these metastable states is expressed as

There have of course been many models studied to under- N
stand the compaction process in granular mddia—13, _ h.ac
which reproduced many of the experimental features. Here Nus Triﬂl H(JEI J”n”SS), @
the spin glass is clearly far from a realistic realization of a
granular media; however, the fact that it has an extensivevhered is the Heaviside step function. This equation may be
entropy of blocked states and the obviously natural form ofunderstood as follows. The energy changE; due to the
the tapping dynamics implemented makes it a natural testingpin flip §— — S is given byAE;=X;.;J;;n;;S;S; . Hence a
ground for ideas about dynamics and the possible thermodyconfiguration is single spin flip stable if alE;’s for that
namics of systems such as granular media. Moreover, it wasonfiguration are non-negative.
argued in Ref[11] that the slow compaction regime is well It should be pointed out here that the definition of meta-
explained if we assume that particles can rearrange thenstable states is of course dependent on the dynamics of the
selves in such a way as to create a particle size void, whickystem, in contrast with microstates in classical statistical
is quickly filled by a new grain. This mechanism involves amechanics. Whether or not, in certain cases, the information
crossing of energy barriers, and leads to a logarithmic comabout the dynamics encoded in the calculation of the entropy
paction before the asymptotic steady state reditr¥. We  of metastable states is enough to allow one to predict the
expect that the local rearrangements which occur during thproperties of the steady state regime is an open question.

Il. SPIN SYSTEMS ON THIN GRAPHS
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The fact that, in our definition of metastable states, we 1 TOMOFT ]
include the marginal casgvhere the energy change is zgro -

implies that hered(x), the Heaviside step function, is taken ;

such thatd(0)=1. In the context of granular media, where

friction plays an important role, this is a natural choice as1 1 T 1OJO1 T 1 Toj J lOT 1 T 10101 T 1 1
one certainly needs a nonzero force in order to make a grair .

move. With this definition, the total number of metastable 2 ™
states of internal enerd per spin is formally given by 1 1 T 1 1 1 T T 1 1 T T 1 1

N
Nus(E)=Tr H 0( 2 Jijnij SSJ-) S(H=NE). (5 FIG. 1. An example of the falling dynamics for a fault of length
=1\ J#I 4. The symbolsO indicate the presence of a domain wall. The

) ) ) broken arrowed lines start at a spin that is flipped, and lead to the
The corresponding Edwards entropy per spin, at a fixed engjiowing configuration.

ergy E per spin, is then given by

ing Ko(n) to be the probability that one hasconsecutive

Seaw(E)=In(Nys(E))/N. 6 X : . .
eaw(E) =IN(Nws(E) ©  domain walls starting from a given sitthence Kq(n)
=(I(n)) where(-) indicates the average over the initial con-
1. ONE-DIMENSIONAL FERROMAGNET ditions], with the initial conditions introduced above one
AND SPIN GLASS finds

We remark that by a gauge transformation the one-
dimensional ferromagnet antlJ spin glass are equivalent,

and for transparency place ourselves in the context of th?]’he length of the defaults has a geometric distribujidine
ferromagnet. Let us remark that the zero temperaturgyjjiq| energy per site of a configuration generated in this

Glauber_ (jynamics of the one-dim_ensipnal ferromagnet_ C@fhanner is thereforéusing the translational invariance of the
be explicitly solved[19]; here a diffusion of the domain system wherN—x) given by

walls occurs, and the dynamics is not blocked. In the

Glauber case one may close the dynamical equations; how- N

ever, here such a closure scheme does not seem possible. The Eo=—1+2 2 Ko(n,N)n. 9

zero temperature Kawasaki dynami@®nserving the total n=1

magnetizatioh of the one-dimensional Ising model, where S o ) ) )

the system can freeze, was solved in R26]. For the dlstnbutlpn of initial configurations considered
To solve the dynamics of the one-dimensional ferromaghere, we therefore find that

net we consider the dynamics from the point of view of the

bonds. We define a fault of lengthto be a sequence of Eo=—1+2a. (10

neighboring adjacent domain walls. The zero temperature

dynamics takes place within these faults via the flipping of We define byx(n) the average npmber Of. isolated do-
. . . main walls left by a fault oh consecutive domain walls after
one of then—1 spins contained between thelomain walls.

We definel,(n) to be the functior(taking the value 1 if its the zero temperature dynamics described above has finished.

argument is true, and 0 otherwjsimdicating that, starting The final energy of the system per sk is therefore

Ko(n,N)=(1—a)?a". 8

from bondi, there are exactly consecutive domain walls N
(there being no domain wall on bond-1 and no domain E;=—1+2 2, Ko(n,N)x(n). (12)
wall on bondn+i but all the intervening bonds have a do- n=1

main wal)). In the initial configuration we take the probabil-

ity that a given spin is different from its left neighb@hat is By the definition of the spin dynamics, domain walls dis-
to say the probability of a domain being between two spinsappear by pairs of two neighboring domain walls. It is clear
to bea. Hence ifa=0, we have an initially ferromagnetic that x(1)=1 and x(2)=0, and we sety(0)=0. Within
configuration. Ifa=1, it we have an antiferromagnetic con- such a fault the dynamics proceeds by flipping one ofrthe
figuration_ The casa=1/2 Corresponds to a Comp|ete|y ran- — 1 Spins between the domain walls. This leads to the elimi-

dom configuration of maximal entropy. The total energy ofnation of the two domain walls on either side of the spin
the initial configuration is then given by being flipped. An example of this dynamics for a fault of

length 4 is shown in Fig. 1. By recurrence, after a random
flip we obtain

Eo=—N+22 X 1i(n), (7) 1 ot
o x(M=1=7 2 x(k=D+x(n—k=1). (12

as the energy is given by the ground state enerdy plus
two times the number of domain wal(sxcitations. Defin-  We solve Eq(12) by introducing the generating functional
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* the fully connected Sherrington Kirkpatrig6K) spin glass
g(z)=>, x(n)z". (13  model[22] was studied, similar behavior was found.
n=1 When the one-dimensional system is tapped we find re-
sults in line with those described later for the spin glasses at
higher connectivity. The curve d&(p), the asymptotic sta-
tionary value of the energy at a givgnis shown in Fig. 3
from 100 systems of size 10 000 spins.
+1>g(z). (14 The time taken to reach a stationary value Eqfp) was
rapid for largem, but for smallp there is a very slow relax-

. L . . ation to the final asymptotic state which is of the form/tl/
Solving this with the appropriate boundary conditions, ongyheret is the number of taps. This is easily understood as, at

The resulting equation fag(z) is

Z2

(1-2)

dg_
ZE_

obtains a very slight tapping ordep effects dominate at early times;
this shows the following(i) Isolated pairs of domain walls
2 exp( — 22) within large domains are immediately destroyed once tap-
9(2)=———>—, (15) ping is stopped(ii) Flipping a spin on either side of a do-
(1-2) main wall creates domain, wall diffusion and with this anni-

hilation by coalescence of domain walls. Hence the
and substituting this into Eq11) yields dynamics at smalb and early times is qualitatively the same
as that for low temperature Ising model coarseni2g).
" In order to go beyond our first calculation Bf and solve
the tapping dynamics, we consider a mean field theory for
Be=—-1+2(1- a)zn; x(ma"=—1+2(1-a)’y(a), the dynamics of a system of connectivityWe shall see that
(16)  atc=2 this theory gives the analytical res{iiq. (17)], and
reproduces the numerical tapping results to within numerical
thus giving the result errors. Once again we concentrate on the dynamics on the
bonds. We say that the bond between two connected sites
(i,]) is satisfied if it gives a negative contribution to the
Ei=—1+2aexp —2a). (17) energy, i.e.,—J;;§5;<0 (here by definitionn;j=1 as the
sites are connectgedin the case of the ferromagnet and
This yields a value oE; for the completely random initial SPin glass this contribution to the energy is clearly either 1 or
configuration, whera=1/2, of —0.632121. In fact the value — 1. Hence here a bond is satisfied or unsatisfied if its con-
of E; is maximal for the casa= 1/2. For the totally antifer- {ribution to the energy is-1 or 1. For a given site we define
romagnetic initial condition, whera=1, here we findg, X to be the difference between the number of unsatisfied and
— —0.72933. Clearly whea=0 the system is already in its s_at|sf|ed bonds. Henceis the local field on the spin at t_hls
ground state, and we fin;=—1 as we should. We note Sité andxe —c,—c+2,... c—2c. If x>0 then the spin
that these valuegand those for alla) have been checked C€an flip bringing about the change- —x. In addition, by
with and are in perfect agreement with our numerical simu-P(x.k) we denote the probability that the site of interest has

lations. This calculation with the one dimensional ferromag-2 local fieldx after a total ofk attempted random sequential

net demonstrates two important points. spin flips under the zero temperature falling dynanfihat is
(i) The final value of the energf; depends strongly on 0 say the dynamics in between tapa/e definef, andf._
the initial configuration. as the probabilities that a given spin can flip conditional on

(i) The system does not fall into a state of energy corretn€ fact that the bond with a given neighboring site is not
sponding to the maximum d¥fi,,s(E). In Refs.[2,3] it was satisfied or satisfied, respectively. Formally we have
shown thatNy,s(E) ~exp(Ns(E)) wheres(E) is a concave
function peaked aE* =—1/5~0.44721. Hence, even if ) ) o )
the total number of metastable states is domindteche f.. =Prob(x>0|given bond is not satisfied or satisfied
statistical sengeby those of energ¥*, generic initial con- (18)
ditions always seem to lead to an energy lower than this
[9,14]. In Ref. [21] the value ofE; for a variety of zero We may turn around this conditional probability using
temperature dynamic&equential, greedy and reluctaii Bayes’ theorem to obtain

(= Prob (x>0 and given bond is not satisfied or satisfied 19
= Prob (given bond is not satisfied or satisfled - (19

046110-4
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Given that a site has local field, it must have ¢+x)/2

unsatisfied bonds andc{x)/2 satisfied bonds. Therefore,

we find that
Prob (x>0 and given bond is not satisfied or satisfied
= P(x)(cxx)/2c
x>0
and
Prob(given bond is not satisfied or satisfjed
=D P(x)(c*Xx)/2c.
X

Putting these results into E¢L8) then gives
P(x)(cxXx)

(20)
P(x)(cxXx)

M

If we are interested in the spin at sitehe possibilities be-
tween timek andk+1 are as follows:

(i) The spin at site is chosen and>0; then the spin at
sitei will flip and x goes to—x.

(ii) The spin at site is chosen ana=<0; then the spin at
sitei cannot flip andx does not change.

(iif) A neighbor of sita with positive local field is chosen
and so flips. In this case,goes tox+2 or tox—2 depend-
ing on whether or not the bond with sitevas satisfied or not
satisfied.

(iv) A neighbor of sita with negative or zero local field is
chosen and so does not flip. In this caseloes not change.
(v) One chooses neither the spin at diteor any of its

neighbors, and sg staysx.

A schematic example of the falling dynamics for a syste
of connectivityc=3 is shown in Fig. 2. Assuming that the

distribution at every site is given bl(x,k) and assuming
independence between the valuesxdfom site to site(the
mean field approximationwve obtain

0(—Xx) 0(—Xx)

P(x,k+1)= N

P(—x,k)+

y P(K)
N kool S
S POk POGK)| S (1)
c+x+2

2N

X1t P(x+2k f
toNn A1) | FP(x+2k) +

C—XxX+2

+P(x= 2K~

f_. (21

PHYSICAL REVIEW E64 046110

FIG. 2. An example of the falling dynamics for a spin system
with ¢=3. The symbols+/— indicate unsatisfied and satisfied
bonds. The broken arrowed lines start at a spin that is flipped, and
lead to the following configuration.

In this equation we have to defir0), thechoice compat-
ible with the conservation of probability i8(0)=1/2. Tak-
ing the limit N—c we may introduce the continuous time
7=Kk/N, and obtain

dP(x)
dr

=0(—X)P(—Xx)+ 0(—X)P(x)—(c+1)P(x)+P(x)

2

cC+x+2
+P(x+2)Tf++P(x—2) f_.

(22)

The average energy per site at timeis then given by
E(7)=%3,xP(x,7), and one can show that the above mean
field equation(22) respects the exact identity for the evolu-
tion of the average energy per spin:

dE
4= 22 XP(x,7).

x>0

(23

mLI'he case where=2 (the one dimensional casé acces-

sible to an analytical solution, and we proceed by defining
u(n)=P(—2,7),
v(7)=P(0,7),
w(r)=P(2,7).
One finds that

(24)
2w

f+:v-I—ZW'

and the full mean field evolution equations become
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du

P fLo+w,

dv

EZ—f+U+2f+W,

(29

P (2f .+ 1)w.

If we look for a stationary solution of Eq§24) and (25),
we find w=0, which expresses the fact that whers infi-
nite, the system is in a metastable state. To solve E4s.
and (25), we introduce\ so thatv =Aw. Then\ obeys the
equation

dA
——=\+2,

dr (26

with the initial condition\(0)=v(0)/w(0). Then Eq.(25)
becomes

du 2\w
dr at2 W
(27)
dw \N+6
dr - a2
A+2=(\(0)+2)e", (28)

andw(7) anduv(r) are given by

(e - 1)), (29

w(ﬂ=w(0)exp< -7+ )\(04?

4
v(7)= —2w(7)+w(0)(>\(0)+2)exp(m(eT_ 1)>_
(30

The probability to have a positive value for the local fields

then goes to zero at infinite, as expected, and the limit of
is v(%)=((0)+2w(0))e ¥IMO*2l |f we consider the

PHYSICAL REVIEW E64 046110

E(p)

-1 1 1 I 1
0.2 0.3 0.4

p

0.5

FIG. 3. Comparison between numerical simulations of tapping
experimentgb) and the analytical resufg) obtained with Eq(33).

Then, after another zero temperature evolution of the system,
it reaches a new local energy probability distribution with
w'()=0 and

v'(*)=(4pg+uv(*)(1—-4pq))

4
X exp{ Pd

4pg+u(°)(1-4pq))

At this stage of computation one should remark that this
recursive equation contains one of the main features of our
numerical simulations, that iseversibility. Indeed, the pro-
cess involved in Eq(32) will reach an asymptotic value
which is independent of the initial conditions and depends on
p. Hence in the steady state regime under tapping, the prob-
ability v4(p) (the subscripsindicating steady stador sites
to have zero local field is solution of the fixed-point equation

(32

vs(P)=(4pa+uvsp)(1-4pQq))

4
><exp( P9

(33

geometric initial conditions used in the previous exact calcu-

lation of E;, the induced initial conditions ara(0)=(1
—a)?, v(0)=2a(1—a), andw(0)=a?. In this case we ob-
tain E;=—1+uv()=—1+2ae 22 reproducing the exact
result[Eq. (17)]. Tapping the system with a tapping prob-
ability p, starting from the value$u(«),v(%),w(x)}, we
obtain the newtappedvalues{u’(0),v’(0),w’(0)}. Defin-
ing q=(1—p), the relations between the old anapped
probabilities are

u’(0)=(1-3pqju(=)+pquv(=),
v'(0)=2pq u(*)+(1-2pg)v(=), (31

w’(0)=pa.

4pqg+vs(p)(1—4pa))”
This equation can be solved numerically and the result is
shown in Fig. 3 in comparison with the numerical simula-
tions, which we see is excellent. The smplbehavior of
E(p) from Eq.(33) is E(p)=— 1+ 2p+0O(p), indicating
that in this case=1/2.

Given the mean field nature of the above calculation we
have used, we do not expect this approximation to correctly
describe the approach towards the steady state. By direct
comparison with the numerical simulations we have verified
that this is indeed the case. Let us remark here that a defect
of the mean field approximation scheme is that it cannot
distinguish between a spin glass and a ferromagnet; this is
clearly not a problem for the one dimensional situation
where the two are identical.
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TABLE |. Comparison of the numerical values &* and -1 T T T T
E(p.) for different values of the local connectivity The result for
E* whenc=3 is a truncation of the analytical value15/14.

c Pe E(ps) E* Eq EYF

3 0.25-0.005 —1.076£0.005 —1.0714 —1.045 —1.023
4 0.255£0.005 —1.07+0.005 —1.07£0.01 —1.01 —1.005
5 045001 —1.4*+0.005 —-1.4*+0.01 —1.396 —1.368

IV. HIGHER CONNECTIVITIES

The systems which we study areJ spin glasses or uni-
form ferromagnets on random graphs with a fixed connectiv-
ity c. Let us first recall some analytical results of R¢&3].

It was found that the mean number of metastable states in
creases exponentially with the number of sites in both cases P
In addition, in Ref.[3] an annealed approximation to the

Edwards entropy per spin of metastable states at fixed energy_FlG' 4. Numerical simulations of tapping experiments for the
E was carried out Spin glass(c) and the ferromagndia), (b), and(d)] for c=3 for
' N=1000[(c) and(d)], N=2000(b), andN=10 000(a). The inset

shows the scalingE™(N,p)=f[N(p— for p=p. for N
seau(B) =IN(Nus(E))IN, (34 Z400, 1000, and gooo.( PI=HN(p=Ra] for p=p.

which may be exact for the ferromagnet as the calculategh,qing to the histogram Fig. 5 is shown in Fig. 6. One sees
entropy s *always positive. Moreover, there is an energyna¢ the system tunnels between the two coexisting states.
thresholdE* above which the results are the same for therpe yical time for this tunneling increases as the system
+J spin glass and the ferromagnet; below, the ferromagnel;;¢ jncreases, indicating, in thermodynamic languadesea

has more metastable states and a nonzero magnetizatiQthergyharrier between the two phases. As the system size is
Hence, as far as the energy density of metastable statesjjfreased, the occupation of the intermediate states of energy
concerned, both the ferromagnet and spin glass are the sargg een the two phase of enerBs andE(p;) (between
aboveE*—that is, the effect of loop frustration is negligible. o 0 peaks in Fig. Bis suppressed. ¢

In this regime, one also suspects that the zero temperature \yo have also measurdg(p) by studying single systems
dynamics is the same. In particular, numerical simulation%f very large sizelﬂzloﬁ)' the results are shown in Fig. 7.
with 100 samples oN=10 000 sites for connectivities of 3, Here again above, the c’urve for the spin glass and the
4, and 5 have_ found the sant for the spin glass a’?d ferromagnet are completely indistinguishable, and the ferro-
ferromagr;et with very good accur_a(ﬁghe relative error is magnet reaches the ground state befaw For such large
about 10°°). The results are show in Table 1. sizes, one no longer sees a coexistence of two phases around

The (esult of t_applng experlm_ents on th?. system; with p. as presumably the tunneling time has become much larger
=3 is displayed in Fig. 4. There is some critical tapping rat€nan the simulation time.

p. above which the curves &(p) versusp are the same for Moreover, forN=1Cf, for p>p, the full temporal plots

the spin gllass and the ferrome}gnet. Moreove(, the ferrorna%—and not just the steady state valuest ESS(p,t) and
net is subject to a phase transition under tapping dynamics at

p. such that forp<p., the steady state reached is the 10
ground state. Finite size effects have been studied, and re-
vealed that the transition is first ordg¢in as far that —

EFM(pd)#E™M(p-)], in contrast to the usual thermody- 8 _
namic ferromagnetic transition in these systems which is sec-
ond order{10]. For the ferromagnet in the region closepo 6L

one finds an excellent scaling of the energy as a function of

N, EFTM(N,p)=f(N(p—p.)), as shown in the inset of Fig. 4. =
This scaling may be used to optimize the determination of 4r
p.. The first order nature of the transition may be seen ex-

plicitly by looking at the histogram over timg@n the steady oL

state regimgof the average energy per spingt p..; in Fig.
5 one sees two separated peaks in the distribution, and not a
single peak which splits into two as one would expect for a 0 : : :
o M -15 -14 -1.3 -1.2 -1.1 -1
second order transition. Neay,, for systems of finite size, E
there is therefore a coexistence of the two phases. The time
dependence of the average energy per spin in the simulationFIG. 5. Histogram of the energy per spin obtained from Fig. 6.
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FIG. 6. Single run for a ferromagnet of local connectivity FIG. 8. Comparison of energy vs tinfaumber of tapsfor the

=3, for N=10000 atp=0.249~p.. One sees that because the +J spin glass(a) and the ferromagnetb) for N=10° spins atp

size is not too large, the energy switches between two values, one0.05. We display the magnetization for a ferromagfuetwhose

not far from that of the ground statéss and the other not far absolute value increases with time, whereas the magnetization of
from E*. the spin glass remains zero.

FM ; indicti ;
E""(p.t) (wheret is the number of tapsare indistinguish- shown in Fig. 7. We remark that if we compare the different

able. Forp<p, the two curves are identical up t0 a time 5,65 ofp, when increasing, and considering only odér
tqis » Which depends on the initial configuration and the se-,

. ) _ ) i ‘ever) connectivities, we find thgt, grows; we expect that it
quence of spins flipped during the tapping process; thay digges o 1/2 whem is very large, as the metastable states are

verge afterty, when the ferromagnetic system reachesyq e and more magnetized wheigrows (in the case of the
quickly the ground statésee Fig. 8 Once the ferromagnetic 1y connected ferromagnetic Ising model, only the two

system has broken tf# symmetry, the easiest way to lower ,.5nd states are metastable me=1/2).

the energy is to flip the spins which are opposed to the glot_)a? The behavior of the spin glass systems is similar to that
magrlletlzgtlor(becguse they are more proba}ble not to be Mor the system witlc=2. The steady state energF%(p) is

the direction of their local field until all the spins are-1 or a monotonically decreasing and continuous functionpof

L , _ , For smallp one finds that her&SS(p)~ESS(0)+Ap, giv-
An identical behavior was found in systems with=4 g 1 'in contrast tog=1/2 in the one dimensional case.
and 5. The comparison @&"(p) andE™"(p) for c=4 is A tentative explanation for the ferromagnetic transition is

as follows. In Ref[3] it was also shown that for a ferromag-
net the Edwards entropy as a function Bfis concave for
E>E* and convex foE<E*. The value ofE(p_) obtained

-1

12 from the tapping experiments are very close to those ob-
tained forE* in Ref.[3], the energy at whiclsgq,, becomes
convex. The results are shown in Table I. Encouraged by this

- -4 striking observation, we will try to make a tentative link with
,_% i a possible thermodynamics for such systems. If we imagine
16 | @ . that t_he energy of the system is governed by a partition func-
o (b) tion inspired by the flat Edwards measure over metastable
N (©) stateq 1,15,
o o (d)
25 0.1 0.2 03 04 05 Z= f dENus(E)exp(—NBE), (35
P

FIG. 7. Numerical simulations of tapping experiments for . - . .
=3 [(c) spin glass(d) ferromagneét and c=4 [(a) spin glass,b) where 8 is a Lagrange multiplier corresponding to the in-
ferromagnek Here we compute the asymptotic energy for only oneVerse Edwards temperature which depends solely and
sample of very large sizbl=10°. The results are quite similar to NOt ONE, and is a monotonically decreasing functionpdbr
those forN=1C°, and do not change if we average over severalP€[0",1/2]. The monotonicity hypothesis is supported by
samples; this indicates that, at these sizes, we are very near thige simulation results tha&i(p) decreases with decreasipg
thermodynamic limit, and we can study only single runs to computeClearly, the energy which dominates in the sum is that obey-
the energy. ing
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&SEdw(E) 1 H ' !
T—,B=O. (36)

e

08
However, if this saddle gives a true maximum of the action

one must have also that
0.6

9?sggw(E)
JE?

Clt,+tL)

<0, (37 04}

and hence the Edwards entropy must be concave for the en- 02 |
ergy considered to be thermodynamically stable. Hence, for
E<E?*, this suggests that the only stable energy is the
ground state, and that the intermediate energies betvii&em
andEgg are not realizable as steady state energies.

Let us mention here that we measured the energy in the
simulations over a few hundred time steps after the energy FIG. 9. Correlation function for the-J spin glass with local
appeared to stop to decay. To be sure that the systems cogbnnectivityc=3, vs the number of tapsfor two values of the
sidered here were in a stationary regifaed that the energy waiting timet,,: t,,=30 000 and,,= 60 000. The tapping value is
was not decaying extremely slowly as a function of time  p=0.02. The system contaif$=1000 spins, and we have aver-
measured the correlation function at different waiting timesaged over 1000 samples. Triangles show the right part of the curve,

t,, (the number of taps after the initial preparation of thewhich corresponds tt,, =60 000; shifted to the left by 30000, it
system); that is to say, superimposes perfectly over the curve fge=30 000, demonstrat-
ing the time translation invariance of the correlation function.

O 1 1 1
20000 40000 60000 80000 100000
number of taps (t+t,)

N
1
C(t+t,,ty)= N Z Si(t,)Si(ty,+1). (38)  times discussed above, the system is completely reversible.
=1 This reversibility was found in the experiments in RES]

In the stationary regime this should be a function only. ¢ once the system had left the initial fluffy state.

out-of-equilibrium systems the fact that the system is not in
equilibrium shows up strongly as aging in the correlation
function, i.e.,C(t+ty,t,) # C(t) (see, Ref[24], and refer- Granular media are a natural example of systems having
ences withip, even though the energy may be decaying soan extensive entropy of metastable states. In such systems
slowly that it appears to have reached its asymptotic equilibthe role of thermal fluctuations are negligible, and in order to
rium value. The time translational invariance (ﬁt(t evolve one must app|y some external tappmg mechanism.
+1ty,ty) is thus quite a rigorous test of whether the steadyone would ultimately like to be able to formulate some sort
state regime has been attained. For example for the gase of thermodynamics for such systems. The proposition of Ed-
=0.02, with the waiting times,,= 30 000 and 60 000 shown wards[1] for a thermodynamics of such systems is an im-
in Fig. 9, one sees clearly that after the appropriate translaortant step in this direction, and has had some success
tion of thet axis, the two functions collapse perfectly onto [14,17, but it has been shown not to be generically {ri4].
one another. One also sees that the decaZ (@) (in the A more general understanding of the asymptotic states of
longtime regime we can now eliminate thgdependences  tapped systems has far reaching implications for computer
exponential at large and also thatC(t) decays to zero, science, as the tapping mechanism studied here is similar to
indicating a form of ergodicity in the system. As pointed out certain algorithms used in optimization problems.
in Ref.[14], this behavior of the correlation function seems a We have presented what appears to be an exact calcula-
necessary condition for the validity of the scenario of Ed-tion of the steady state energy of a tapped one-dimensional
wards, that under tapping all metastable states satisfying thepin glass or ferromagnet. For this problem we have obtained
relevant macroscopic constrairifsxed energy and compac- fixed point equations for the distribution of local fields under
tivity) are equiprobable in the stationary regime of gentlytapping. These equations also explain the reversibility ob-
tapped or perturbed system. served in the numerical simulations. In a wide context of
In order to test the accuracy of the mean field approximamodels we confirm the observations of Rd5,6,9, that, if
tion at high energieswhere the system does not distinguish one reduces thetrength of tapping, then the compaction
between the ferromagnet and the spin glag® have com- process, corresponding here to the reduction of the energy of
pared the value oE; obtained in the numerical simulations the system, becomes more efficient. The existence of a first
with the resultE}'" obtained by numerical integration of Eq. order type phase transition for tapped ferromagnets on ran-
(22). The comparison is shown in Table I, and we see thatiom thin graphs is of great interest; a possible explanation
the agreement is quite good. using the calculations of Rdf3] on the Edwards entropy for
Finally we mention that we have also examined the re-this system indicates the possibility that one may eventually
versibility of the tapping mechanism. If the system is tappedconstruct a more general theory for the thermodynamics and
for a sufficiently long time, compatible with the relaxation even phase transitions in tapped systems. One is tempted to

V. CONCLUSION
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speculate that generically the convexity of the Edwards entext that several steady state observables may be predicted
tropy below a certain energy threshaliEnoted here bfg*) using the Edwards’ measure. The phase transition found in
leads to acollapseto the ground state enerdis s, the meta- the case of the ferromagnetic systems studied here is ex-
stable states in the intervening energy values being unable teemely interesting. An analytical understanding of this phe-
support a stable thermodynamics. In terms of granular medinomena would be desirable; perhaps there exists a percola-
this sort of transition would correspond to a transition be-tion type argument which would allow one to evaluate
tween a random close packed state to a crystalline clos@lso of interest is the decay of a system toward its final
packed state. It would be interesting to find other systemsteady state energy. The slow logarithmic decay described by
(both theoretical and experimentalhowing the same col- Eq. (2) has been used successfully to fit the experimental
lapse phenomena in order to test this idea. data of Ref[5] and the simulation data of Ref®,12]. Our

Finally let us mention some open questions, posed by thipreliminary study of finite connectivity spin glasses and the
study, that we believe to be of interest for future investiga-SK model[18] indicates the presence of a slow dynamical
tion. Clearly a general goal would be, in the spirit of Ed- regime for small values of the tapping paramegtewhich is
wards, to develop a thermodynamics to describe the statioralso compatible with a slow logarithmic decay, but the
ary regime of tapped systems such as those studied here. Therves can also be well fitted by power law decéaygh the
exact results presented here for one-dimensional systenseme number of fitting parametgrdHowever, there exist
provide a completely analytical understanding of the tappingphenomenological argumerjtsl] and exact calculations and
dynamics which one may be able to rederive from staticsimulations on toy modelgl1-13 which support logarith-
considerations. Indeed it was shoyi] in this simple con- mic decay.
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